Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 374(6565): 316-323, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34648327

RESUMO

Although dexterity relies on the constant transmission of sensory information, unchecked feedback can be disruptive. Yet how somatosensory feedback from the hands is regulated and whether this modulation influences movement remain unclear. We found that mouse tactile afferents recruit neurons in the brainstem cuneate nucleus, whose activity is modulated by distinct classes of local inhibitory neurons. Manipulation of these inhibitory circuits suppresses or enhances the transmission of tactile information, which affects manual behaviors. Top-down cortical pathways innervate cuneate in a complementary pattern, with somatosensory cortical neurons targeting the core tactile region of cuneate and a large rostral cortical population driving feed-forward inhibition of tactile transmission through an inhibitory shell. These findings identify a circuit basis for tactile feedback modulation that enables the effective execution of dexterous movement.


Assuntos
Retroalimentação Sensorial , Destreza Motora/fisiologia , Tato/fisiologia , Animais , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Feminino , Masculino , Camundongos , Camundongos Mutantes , Movimento , Inibição Neural , Optogenética , Córtex Somatossensorial/fisiologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética
2.
N Engl J Med ; 384(10): 924-935, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33704937

RESUMO

BACKGROUND: Genomic analysis is essential for risk stratification in patients with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS). Whole-genome sequencing is a potential replacement for conventional cytogenetic and sequencing approaches, but its accuracy, feasibility, and clinical utility have not been demonstrated. METHODS: We used a streamlined whole-genome sequencing approach to obtain genomic profiles for 263 patients with myeloid cancers, including 235 patients who had undergone successful cytogenetic analysis. We adapted sample preparation, sequencing, and analysis to detect mutations for risk stratification using existing European Leukemia Network (ELN) guidelines and to minimize turnaround time. We analyzed the performance of whole-genome sequencing by comparing our results with findings from cytogenetic analysis and targeted sequencing. RESULTS: Whole-genome sequencing detected all 40 recurrent translocations and 91 copy-number alterations that had been identified by cytogenetic analysis. In addition, we identified new clinically reportable genomic events in 40 of 235 patients (17.0%). Prospective sequencing of samples obtained from 117 consecutive patients was performed in a median of 5 days and provided new genetic information in 29 patients (24.8%), which changed the risk category for 19 patients (16.2%). Standard AML risk groups, as defined by sequencing results instead of cytogenetic analysis, correlated with clinical outcomes. Whole-genome sequencing was also used to stratify patients who had inconclusive results by cytogenetic analysis into risk groups in which clinical outcomes were measurably different. CONCLUSIONS: In our study, we found that whole-genome sequencing provided rapid and accurate genomic profiling in patients with AML or MDS. Such sequencing also provided a greater diagnostic yield than conventional cytogenetic analysis and more efficient risk stratification on the basis of standard risk categories. (Funded by the Siteman Cancer Research Fund and others.).


Assuntos
Análise Citogenética , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/genética , Sequenciamento Completo do Genoma , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Análise de Sobrevida , Sequenciamento Completo do Genoma/métodos
3.
Front Cell Neurosci ; 12: 20, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29440994

RESUMO

Layer 1 (L1) interneurons (INs) play a key role in modulating the integration of inputs to pyramidal neurons (PNs) and controlling cortical network activity. Hyperpolarization-activated, cyclic nucleotide-gated, non-specific cation (HCN) channels are known to alter the intrinsic and synaptic excitability of principal components (PCs) as well as select populations of GABAergic INs. However, the developmental profile and functional role of HCN channels in diverse L1 IN populations is not completely understood. In the present study, we used electrophysiological characterization, in conjunction with unbiased hierarchical cluster analysis, to examine developmental modulation of L1 INs by HCN channels in the rat medial agranular cortex (AGm). We identified three physiologically discrete IN populations which were classified as regular spiking (RS), burst accommodating (BA) and non-accommodating (NA). A distinct developmental pattern of excitability modulation by HCN channels was observed for each group. RS and NA cells displayed distinct morphologies with modulation of EPSPs increasing in RS cells and decreasing in NA cells across development. The results indicate a possible role of HCN channels in the formation and maintenance of cortical circuits through alteration of the excitability of distinct AGm L1 INs.

4.
J Physiol ; 596(5): 901-919, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29274075

RESUMO

KEY POINTS: An increase in the excitability of GABAergic cells has typically been assumed to decrease network activity, potentially producing overall anti-epileptic effects. Recent data suggest that inhibitory networks may actually play a role in initiating epileptiform activity. We show that activation of GABAergic interneurons can elicit synchronous long-lasting network activity. Specific interneuron subpopulations differentially contributed to GABA network synchrony, indicating cell type-specific contributions of interneurons to cortical network activity. Interneurons may critically contribute to the generation of aberrant network activity characteristic of epilepsy, warranting further investigation into the contribution of distinct cortical interneuron subpopulations to the propagation and rhythmicity of epileptiform activity. ABSTRACT: In the presence of the A-type K+ channel blocker 4-aminopyrdine, spontaneous synchronous network activity develops in the neocortex of mice of either sex. This aberrant synchrony persists in the presence of excitatory amino acid receptor antagonists (EAA blockers) and is considered to arise from synchronous firing of cortical interneurons (INs). Although much attention has been given to the mechanisms underlying this GABAergic synchrony, the contribution of specific IN subtypes to the generation of these long-lasting discharges (LLDs) is incompletely understood. We employed genetically-encoded channelrhodopsin and archaerhodopsin opsins to investigate the sufficiency and necessity, respectively, of activation of parvalbumin (PV), somatostatin (SST) and vasointestinal peptide (VIP)-expressing INs for the generation of synchronous neocortical GABAergic discharges. We found light-induced activation of PV or SST INs to be equally sufficient for the generation of LLDs, whereas activation of VIP INs was not. By contrast, light-induced inhibition of PV INs strongly reduced LLD initiation, whereas suppression of SST or VIP IN activity only partially attenuated LLD magnitude. These results suggest neocortical INs perform cell type-specific roles in the generation of aberrant GABAergic cortical network activity.


Assuntos
Neurônios GABAérgicos/fisiologia , Hormônios/farmacologia , Interneurônios/fisiologia , Neocórtex/fisiologia , Optogenética , Parvalbuminas/fisiologia , Somatostatina/fisiologia , Peptídeo Intestinal Vasoativo/fisiologia , Potenciais de Ação , Animais , Animais Recém-Nascidos , Feminino , Neurônios GABAérgicos/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Neocórtex/efeitos dos fármacos
5.
Front Cell Neurosci ; 11: 109, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469560

RESUMO

Cortical malformations are often associated with pharmaco-resistant epilepsy. Alterations in hyperpolarization-activated, cyclic nucleotide-gated, non-specific cation (HCN) channels have been shown to contribute to malformation associated hyperexcitability. We have recently demonstrated that expression of HCN channels and Ih current amplitudes are reduced in layer (L) 5 pyramidal neurons of rats with freeze lesion induced malformations. These changes were associated with an increased EPSP temporal summation. Here, we examine the effects of HCN channel inhibition on synaptic responses in fast spiking, presumptive basket cells and accommodating, presumptive Martinotti, GABAergic interneurons in slices from freeze lesioned animals. In control animals, fast spiking cells showed small sag responses which were reduced by the HCN channel antagonist ZD7288. Fast spiking cells in lesioned animals showed absent or reduced sag responses. The amplitude of single evoked EPSPs in fast spiking cells in the control group was not affected by HCN channel inhibition with ZD7288. EPSP ratios during short stimulus trains at 25 Hz were not significantly different between control and lesion groups. ZD7288 produced an increase in EPSP ratios in the control but not lesion groups. Under voltage clamp conditions, ZD7288 did not affect EPSC ratios. In the control group, accommodating interneurons showed robust sag responses which were significantly reduced by ZD7288. HCN channel inhibition increased EPSP ratios and area in controls but not the lesioned group. The results indicate that HCN channels differentially modulate EPSPs in different classes of GABAergic interneurons and that this control is reduced in malformed rat neocortex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...